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What is Transmission line??

1.Transmission line is defined as path of carrying information in the form of Electro Magnetic 
Wave(EM wave) from source(generator) to destination(load)

2.Guided structures serve to guide(or direct) the propagation of energy from source to load. 



Fig.(a)

Fig.(b)

What is Transmission line??



Types of transmission lines

(i)parallel wire transmission line

(ii)Coaxial line

(iii)Waveguides

(iv)Optical fiber

(v)Microstrip lines



Types of transmission lines

Parallel wire transmission line

1.These lines are the parallel conductors 

2.The conductors are separated by air as the dielectric and mounted on posts or towers

3.Parallel wire transmission line are two types 
(i)Low frequency high power line

Ex:Electrical power line
(ii)High frequency Low power lines

Ex:Telephone lines

4.These lines are balanced with respect to earth and effected by atmospheric conditions like 
wind, air, ice etc And also possibility of shorting due to flying of objects and birds

5.These line are not suitable for frequencies above 100MHz



(a) (b)

Fig: Two wire transmission line

Types of transmission lines

Parallel wire transmission line



Types of transmission lines

Coaxial transmission line

1.In this type one conductor is hallow tube the second conductor being located inside 
and coaxial with the tube

2.The dielectric between the two conductors may be solid or gaseous  

3.To avoid radiation losses taken place in open wire line at frequencies beyond 100MHz, 
a closed Field configuration is employed in coaxial cable by surrounding the inner 
conductor  with an outer cylindrical hallow conductor.

4.Advantage of coaxial cable is that electric and magnetic fields remain confined with in 
the outer conductor and cannot leak into freespace



Difference between transmission line 
and antenna

Transmission line must send energy only along it

Transmission line does not 
send energy along normal 
to its direction

Fig(a) Transmission line Fig(b) Antenna (Lossy Transmission line)



(a) (b)

Fig: Coaxial transmission line

Types of transmission lines

Coaxial transmission line



For lossy dielectrics

As frequency increase, signal attenuation increases

For free space  

0 

Types of transmission lines

Coaxial transmission line



Types of transmission lines

Waveguides

1.A transmission line consisting of a suitable shaped hallow conductor, which may be filled 
with a dielectric material and is used to guide EM wave of UHF propagated along its length 
is called a waveguide

2.Waveguide allow to pass different signals simultaneously. However different signals being 
propagated through a line must have different frequency, but in a waveguide they can have 
same frequency provided that each is propagated at different mode.

3.This kind of multiplex transmission power handling capacity of waveguide is higher than  
coaxial cable



Parallel plane waveguide Rectangular waveguide Circular waveguide

Waveguides

Types of transmission lines



Skin depth-application

Skin depth is a measure of the depth to which an EM wave can penetrate the medium

1

f
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The skin depth in silver is small, the difference in performance between a pure silver
component and a silver plated brass component is negligible, so silver plating is often is used
to reduce material cost of waveguide components



Skin effect

Skin depth

Skin depth-application



Signal propagation between two conducting walls

Types of transmission lines

Waveguides



Types of transmission lines

Optical fiber

Optical fiber lines offer several advantages over wire lines
(i)Superior transmission quality
(ii)Higher information carrying capacity due to tremendous bandwidth
(iii)Light weight and smaller size
(iv)Reduced cost and higher security

Optical fiber cable

Optical fibers are working on the principle of total internal reflection(TIR)

Core refractive index
Is higher than cladding
refractive index to get
TIR



Types of transmission lines

Microstrip lines

1.These lines are particularly important in integrated circuits where metallic strips  
connecting electronic elements are deposited on dielectric substrates

2.Microstrips are used for circuit components such as filters, couplers, resonators,       
antennas.     

3.These line having greater flexibility

Microstrip line



Types of transmission lines



Fig: Two wire transmission line

Fig: Dividing of Two wire transmission line  into different parts

Transmission line parameters



Transmission line parameters

R-Resistance of each conductor per unit length (Ω/m)
L-Inductance of each conductor per unit length (H/m)
G-Leakage conductance between two conductors per unit length (mho/m)
C-Capacitance between two conductors per unit length (F/m)
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Transmission line parameters
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Transmission line equations



Transmission line equations

By applying KVL to the outer loop of circuit

0z If ( , ) (z, t) ( , )V z z t V V z t

z z
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By applying KCL to the main node of circuit

Transmission line equations

I(z, t) = I(z + Az, t) + ΔI
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Transmission line equations

If we assume time harmonic dependence

( , ) ( )e j tV z t V z  ; I( , ) ( )e j tz t I z 

Substitute above two equations in (1), (2) respectively
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Final Voltage and Current equations of transmission line are
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Transmission line equations

Where ( )(G )R j L j C    



Secondary Constants

j   

Where  is propagation constant which tells about propagation characteristics of EM wave

Where α is attenuation constant which is measure of attenuation of  EM wave

Where β is phase constant which is measure of phase variation per unit wave length 

 Units- 1/m

α Units- dB/m or NP/m

β Units- rad/m

1 Neper =8.686dB

2



 ; λ is wave length





 ; Is velocity of wave propagation

ω is angular frequency

ω=2πf ; f is frequency

Propagation constant

( )(G )R j L j C    
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Propagation constant

Secondary Constants



(ii)

Adding (i) and (ii)

Propagation constant

Secondary Constants



Subtracting (ii) from (i)

Propagation constant

Secondary Constants



The solutions of  the linear homogeneous differential equations  (6), (7) are

Where 0 0 0 0, , ,V V I I   
are wave amplitudes; the + and – signs, respectively,

denote wave traveling along +z and –z directions, as is also indicated by arrows

(8)

(9)

Secondary Constants
Characteristic impedance



The characteristic impedance 
0Z of the line is the ratio of positively traveling voltage wave

to current wave at any point on the line
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Now substitute equation (8) , (9) into equation (3)  
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Secondary Constants
Characteristic impedance



Compare 
ze 
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Compare coefficients
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Secondary Constants
Characteristic impedance 
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Fig: Lossy transmission line

Characteristics of wave propagation on 
different transmission lines



Lossless Line (R = G = 0)

c  

0 

Fig: Lossless transmission line

Characteristics of wave propagation on 
different transmission lines
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j LC j     

Compare real and imaginary parts

0  ; LC 

0 0 0

R j L
Z R jX

G j C






  



0 0

L
Z R

C
  ;

0 0X 

LC

 


 
 

1
f

LC
  

Characteristics of wave propagation on 
different transmission lines

Lossless Line (R = G = 0)



Conclusions

1. Propagation constant is purely imaginary
2. Signal attenuation is equal to zero
3.Phase constant is linearly dependant on frequency
4.Velocity of wave propagation is constant
5.Characteristic impedance is purely real

Characteristics of wave propagation on 
different transmission lines

Lossless Line (R = G = 0)



Distortion less line(R/L = G/C)
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Characteristics of wave propagation on 
different transmission lines



R
RG j C

G
  

L
RG j C

C
  

RG j LC j      

RG 

LC 

0 0 0

R j L
Z R jX

G j C






  



Characteristics of wave propagation on 
different transmission lines

Distortion less line(R/L = G/C)



Conclusions

1.Attenuation does not depend on frequency and it is constant
2.Phase constant is linearly dependant on frequency
3.The phase velocity is independent of frequency
4.Velocity and characteristic impedance remain same as for lossless lines
5.A lossless is also a distortion less line, but a distortion less line is not necessarily lossless.
6.Lossless lines are desirable in power transmission, telephone lines are required to be 

distortion less

Characteristics of wave propagation on 
different transmission lines

Distortion less line(R/L = G/C)



Characteristics of wave propagation on 
different transmission lines
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Low loss line(R<<ωL,  G<<ωC)-UHF lines



Low loss line(R<<ωL,  G<<ωC)-UHF lines

Characteristics of wave propagation on 
different transmission lines
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Problems

Sol:

1.



Sol:

2.

Problems



Problems



3.

4.

Problems



Loading



Loading



Loading

(a)
(b)

Fig: Telephone lines with (a) 5 pair cables (b) 100 pair cables



Loading

There are two methods of loading a line 
1.Continouos loading
2.Lumped loading



Loading

Continuous loading



Advantages of continuous loading

1.The attenuation to the signal is independent of the frequency and it is same to all the
frequencies

2.The increase in the inductance up to 100mH per unit length of the line is possible

Disadvantages of continuous loading

1.The method is very costly
2.Existing lines cannot be modified by this method. Hence total replacement of the existing 

cables by the new cables wound with magnetic tapes is required. This again costly and 
uneconomical.

3.Extreme precision care must be taken while manufacturing continuously loaded cable, 
otherwise it becomes irregular.

4.All along the conductor, there will be huge mass of iron. Thus for ac signals there will be 
large eddy current and hysteresis losses. The eddy current losses increase directly with 
square of frequency while the hysteresis losses increase directly with  the frequency. 
Hence overall this puts the upper limit to increase inductance.

This method is not used for the landlines but are preferred for the submarine cables

Loading



Loading

Lumped Loading

In this type of loading , the inductors are introduced in lumps at the uniform distances,
in the line. Such inductors are called lumped inductors. The inductors are introduced in
both the limps to keep the line as balanced circuit. The lumped inductors are in the form
of coils called loaded coils.



Loading

Advantages
1.The cost involved is less
2.With this method the existing lines can be tackled and modified
3.Hysteresis and eddy current losses are small

Disadvantages
1.The attenuation increases  considerably after the cutoff frequency

Lumped Loading



Loading



Condition for distortion less line

Condition for distortion less line or minimum attenuation
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Condition for distortion less line



Condition for distortion less line
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Condition for distortion less line



Questions

1. Describe the different types of transmission lines with schematic diagrams
2. Show that attenuation is constant and phase constant is linearly dependant on frequency

in a distortion less transmission line
3.    Summarize the characteristics of wave propagation in loss less and distortion less 

transmission lines.
4. Show that phase constant is same in lossless, distortion less and low loss transmission

lines.
5. Derive the condition which is used for minimum attenuation in transmission line.
6. Describe the equivalent circuit of two wire transmission line
7. Differentiate the lossless, distortion less, low loss transmission lines.
8. Determine the line parameters R,L,G,C for a distortion less line with γ=0.04+j15 /m, 

Z0=80 Ω, f=500MHz.
9. Discuss primary constants of transmission line with the use of equivalent model
10. Derive the characteristic impedance of transmission line in terms of its line constants. 
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Input impedance of transmission line
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Input impedance of transmission line
Voltage and current equations of transmission line are

(1)

(2)

(3)

Substitute (3) in (2) 
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;
At z=0

From (4)
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Input impedance of transmission line
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Input impedance of transmission line
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varies periodically with distance l 
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Input impedance of transmission line

(Lossy line)
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Input impedance of transmission line in terms of reflection coefficient



Reflection coefficient

The voltage reflection coefficient at any on the line is the ratio of the magnitude of the 
Reflected voltage wave to that of incident wave

Incident voltage wave Reflected voltage wave

At the load (z )l
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Current reflection coefficient is negative of voltage reflection coefficient

Reflection coefficient
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Current reflection coefficient



VSWR
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Standing wave ratio is the ratio between maximum voltage (current) and minimum voltage 
(current) of standing wave
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If standing wave ratio is expressed in terms of voltages then it is called as Voltage Standing 
Wave Ratio (VSWR)
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Relation between VSWR
And Reflection coefficient



Range of VSWR and Reflection coefficient
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Short Circuit (SC) Lines
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We notice from equation  (1) that input impedance of short circuited line is a pure reactance,
Which could be capacitive or inductive depending on the value of ‘l’. The variation of input
impedance of short circuited line with ‘l’ as shown in figure

Short Circuit (SC) Lines
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=
l<λ/4

Fig: length of shorted line<λ/4 Fig: Equivalent circuit of shorted line
with l<λ/4

So length of shorted line with length <λ/4 acting as inductor

=
λ/4<l<λ/2

Fig: length of shorted line
In between λ/4 and λ/2

Fig: Equivalent circuit of shorted line
with λ/4 <l< λ/2

So length of shorted line In between λ/4 and λ/2 acting as capacitor

Short Circuit (SC) Lines



=
l=λ/4

Fig: length of shorted line=λ/4 Fig: Equivalent circuit of shorted line
with l=λ/4

So length of shorted line with length =λ/4 acting as combination of inductor
and capacitor

Short Circuit (SC) Lines
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Open Circuit (OC) Lines



We notice from equation  (1) that input impedance of short circuited line is a pure reactance,
Which could be capacitive or inductive depending on the value of ‘l’. The variation of input
impedance of short circuited line with ‘l’ as shown in figure

Open Circuit (OC) Lines



Length of line in terms 

of λ

ZOC

0 0 -infinity

450 λ/8 -jZ0

900 λ/4 0

1350 3λ/8 jZ0

1800 λ/2 infinity

l

Open Circuit (OC) Lines

0 cotOCZ jZ l 



=
l<λ/4

Fig: length of opened line<λ/4 Fig: Equivalent circuit of opened line
with l<λ/4

So length of opened line with length <λ/4 acting as capacitor

=
λ/4<l<λ/2

Fig: length of opened line
In between λ/4 and λ/2

Fig: Equivalent circuit of opened line
with λ/4 <l< λ/2

So length of opened line In between λ/4 and λ/2 acting as inductor

Open Circuit (OC) Lines



=
l=λ/2

Fig: length of opened line=λ/2 Fig: Equivalent circuit of opened line
with l=λ/2

So length of opened line with length =λ/2 acting as combination of inductor
and capacitor
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Open Circuit (OC) Lines



Matched line

This is the most desired case from practical point of view
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Infinite line




0, Z

Fig: Infinite line

If a line of infinite length is considered, then all the power fed into it will be absorbed. The 
Reason being as we move away from the input terminals towards load the current and 
voltage will decrease along the line and become zero at an infinite distance.

0 0(z) z zV V e V e    

0 0(z) z zI I e I e    

Voltage and current equations of finite transmission line are

(1)

(2)



At infinite distance V(z) = I(z) = 0

0 0 00 0V e V e V         From equation (1)

0 0 00 0I e I e I         From equation (2)

0(z) zV V e  

0(z) zI I e  

(3)

(4)

So (3), (4) are voltage and current equations of infinite line

From (3), (4) we say that along infinite line there is no reflected wave. So along infinite line 
all power is terminated without any reflection. 

Infinite line



Eighth wave (λ/8) line
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Significance: Magnitude of Input impedance of eighth wave line is equivalent to
line impedance



l=λ/4
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Significance: The quarter wave line can transform a low impedance into a high impedance
and vice versa, thus it can be considered as an impedance inverter.
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Quarter wave (λ/4) line



l=λ/2
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Significance: In half wave line load impedance is directly equal to input impedance of line.
So half wave line is considered as one to one transformer or impedance reflector
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Half wave (λ/2) line



Power in a transmission line

The voltage and current equations of lossless transmission line at the load are
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Power in a transmission line
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(3)

From (3) first term is the incident power Pi while the second term is the reflected power Pr
From (3) we should notice that maximum power is delivered to the load when  0L 

Power in a transmission line



Problems



Problems



Smith Chart

Graphical indication of impedance of transmission line as one moves along line

Fig: Unit Circle on which Smith chart is constructed



Smith Chart
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Smith Chart

(1)
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Smith Chart

From (1)



Smith Chart



Smith Chart



Smith Chart

From (2)



Smith Chart
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Quarter wave transformer
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Quarter wave transformer



Stub Matching

LYMain line  
0Y

sl

tl
Short circuit stub

Fig: Transmission line with single stub

A use of open or closed stub line of suitable length as a reactance shunted across the 
transmission line at a suitable distance from the load to tune the line and the load is called
as stub matching

Short circuit stubs are Preferable than
open circuit Stubs because

(i)Infinite terminating impedance 
is more difficult to realize than zero
terminating impedance 

(ii)Radiation is more in open circuit
Stubs 

0inY Y



Stub Matching
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Stub Matching
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Stub Matching
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Stub Matching
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Stub Matching
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Stub Matching
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Stub Matching



Questions
1.Discuss the variation of input impedance with electrical length of transmission     

line for different loads.

2.Determine the reflection coefficients when

(i)ZL=Z0    (ii)ZL=short circuit  (iii) ZL=open circuit (iv)ZL=purely reactive

3.Interpret the impedance matching with the use of quarter wave transformer.

4.Develop the input impedance of transmission line from transmission line equations. 

5.Summarize the significance of λ/8, λ/4, λ/2 lines.

6.Interpret the impedance matching with the use of stub matching.

7.Interpret how Smith chart is useful in solving transmission line problems compared with 
analytical approach.

8.Derive the relation between reflection coefficient and VSWR.

9.Describe how UHF lines can be treated as circuit elements using the necessary equivalent 
circuits.
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Unit-3
Guided Waves

Contents
1.General field equations
2.Transverse Electric waves(TE Waves)
3. Transverse Magnetic waves(TM Waves)
4.Characteristics of TE, TM waves
5.TEM Wave
6.Velocities of wave propagation
7.Wave lengths
8.Wave impedances
9.Attenuation factor



Boundary conditions

Boundary conditions at the boundary between conductor and freespace
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Boundary conditions

(1)Electric field intensity which is tangential to conducting surface is equal to zero
(2)Electric flux density which is normal  to conducting surface is equal to surface charge 

density on the conducting surface i.e Normal component of electric field intensity is 
not equal to zero

(3)Magnetic field intensity which is tangential to conducting surface is equal to surface 
current

(4) Magnetic field intensity which is normal to conducting surface is equal to zero



Basics of EM wave propagation
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Basics of EM wave propagation
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Basics of EM wave propagation
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Parallel Plane Waveguide

Fig: Parallel plane waveguide

Along X-direction boundaries are defined i.e 0
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General field Equations

H j E 

E j H  

( )

x y z

x x y y z z

x y z

a a a

j E a E a E a
x y z

H H H



 
 
      

   
 
  

(H )

x y z

x x y y z z

x y z

a a a

j a H a H a
x y z

E E E



 
 
       

   
 
  

(1)

(2)

(3)

(4)



General field Equations
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General field Equations
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General field Equations
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General field Equations
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TE Waves
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TE Waves
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Solution of above 2nd order differential equation is

(I)

Apply above boundary condition in I

(II)

Apply above boundary condition in II

; m=0,1,2,3..

1c 2c are constants,



TE Waves
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For different values of integer m there are
different field configurations and these field
configurations are called as modes(          )
If m=0 all components are equal to zero.i.e.

Mode does not possible
If 
i.e is Least possible mode in              waves
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TM Waves

0zH 

, , 0z x yE E H 

2 2H H   

2 2 2

2

2 2 2

y y y

y

H H H
H

x y z
 

  
   

  

2

2 2

2

y

y y

H
H H

x
  


  



2

2 2

2
( )H

y

y

H

x
  


  



2

2

2

y

y

H
h H

x


 





TM Waves
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For different values of integer m there are
different field configurations and these field

configurations are called as modes(            )
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Mode is possible and it is Least possible mode
In              waves 
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Characteristics of TE, TM waves

Cutoff frequency
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Characteristics of TE, TM waves
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Characteristics of TE, TM waves

If the medium between two conducting plates is freespace

2
c

mc
f

a


( )c cf f  If

Is purely real and there is no wave propagation

( )c cf f  If

Is purely imaginary and there is wave propagation
To get wave propagation between two conducting walls operating frequency f 
must be greater than cutoff frequency and we can say parallel plane waveguide
Acting as High Pass Filter 



Characteristics of TE, TM waves

Cutoff frequency is defined as the frequency below which wave propagation ceases

2
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Cutoff wave length
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2
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m
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The mode which is having least cutoff frequency and highest cutoff wave length is called 
as dominant mode

10 2
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Characteristics of TE, TM waves

00
0cTMf 

In           waves dominant mode is  

In             waves dominant mode is     

0mTE

0mTM

10TE

00TM

is dominant mode for the entire parallel plane waveguide00TM



TEM Waves

TM wave (                   ) equations are
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TEM Waves

0zE  0zH , TEM wave is possible between two conducting walls

TEM wave is also called as principal wave

Properties of TEM wave

1.Fields are entirely transverse

2.The amplitudes of field components along the normal to wave propagation are constant 
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TEM Waves

3.Cutoff frequency is zero indicating that all the frequencies down to zero can propagate 
along the guide

2
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m
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a 


For m=0 0cf 

4.Velocity of TEM wave is equal to velocity of light if the medium between conducting walls
is freespace

0 0 0 0

1
v

 

     
  

5.The ratio between E-field and magnetic field components is called as intrinsic impedance
given by
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Velocities of wave propagation

Velocity of single frequency component along the guide is called as phase velocity
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Velocities of wave propagation
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Velocities of wave propagation

Velocity of resultant energy propagation along the guide  is called as group velocity
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Velocities of wave propagation
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Wavelengths

Relation between cutoff wavelength(      ), guided wave length(       ) and freespace
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Wavelengths
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Wave impedances
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Wave impedances
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Wave impedances
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Wave impedances
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Attenuation factor
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Attenuation factor

Power loss per unit length for width b of conducting plates = 
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Attenuation factor

TE Wave
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General field Equations
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General field Equations
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General field Equations
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General field Equations
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
From (15) (17)

Substitute (17) in (8)
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General field Equations
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Impossibility of TEM wave in a hallow 
waveguide

For TEM wave 0z zE H 

2 2
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0 0z z x y x yE H E E H H      If

i.e All components are zeros means TEM wave is not possible in any hallow waveguide  



TM wave
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1 1d X d Y
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1 d X
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 
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2

1 d Y
A

Y dy
 Let ;

2 2 2B A h 

(I) (II)

Solution of I and II are 
1 2cos sinX c Bx c Bx 

3 4cosAy sinAyY c c 

TM wave



TM wave

1 2 3 4E ( cos sin )( cosAy sinAy)z XY c Bx c Bx c c   

(i)Bottom conducting wall

E 0z  At y=0 x  0 to a

(III)

Apply above boundary condition in III

1 2 30 ( cos sin )c Bx c Bx c 

3 0c 

1 2 4E ( cos sin ) sinAyz c Bx c Bx c  (IV)

(ii)Left conducting wall

E 0z  At x=0 y  0 to b

Apply above boundary condition in IV



TM wave

1 40 c sinAyc

1 0c 

2 4 sin sinzE c c Bx Ay (V)
(iii)Top conducting wall

E 0z  At y=b x  0 to a

2 40 sin sinc c Bx Ab

0SinAb 

Ab n

n
A

b




sin sin( )z

n
E c Bx y

b


 (VI)

Apply above boundary condition in V

n=0,1,2,3…



TM wave

E 0z  At x=a y  0 to b

(iv)Right conducting wall

Apply above boundary condition in VI

0 sin sin( )
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c Ba y
b




sinBa 0

Ba m

B
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a




sin( )sin( )e z

z

m n
E c x y
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  

m=0,1,2,3…



TM wave
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
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

 
 



For different values of integer m and n there are different field configurations and these field
configurations are called as modes(               modes).
m represents field variation along X-direction, n represents field variation along Y-direction
For m=0,n=0; m=0,n=1; m=1,n=0 all the components are equal to zeros. i.e
modes does not exist. Least possible mode in                 waves is   

TMmn

00, 01, 10TM TM TM
TMmn 11TM



TE wave
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XY XY
h XY
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 
  
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1 1d X d Y
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X dx Y dy
  
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1 d X
B

X dx
 

2
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2

1 d Y
A

Y dy
 Let ;

2 2 2B A h 

(I) (II)

Solution of I and II are 
1 2cos sinX c Bx c Bx 

3 4cosAy sinAyY c c 

TE wave



TE wave

(III)

(i)Bottom conducting wall

E 0x  At y=0 x  0 to a

Apply above boundary condition in IV

1 2 3 42 2
( cos sin )( AsinAy AcosAy)z

x

Hj j
E c Bx c Bx c c

h y h
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(IV)

1 2 42
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c Bx c Bx c
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
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4c 0

1 2 3( cos sin )( cosAy)zH c Bx c Bx c 

1 2 3 4( cos sin )( cosAy sinAy)zH XY c Bx c Bx c c   



TE wave

(ii)Left conducting wall

E 0y  At x=0 y  0 to b

1 2 32 2
( Bsin Bcos )( cosAy)z

y

Hj j
E c Bx c Bx c

h x h

 
   
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(V)

Apply above boundary condition in V

2 32
0 ( Bcos )( cosAy)

j
c Bx c

h




2 0c 

1 3(cos )(cosAy)zH c c Bx

(iii)Top conducting wall

E 0x  At y=b x  0 to a



TE wave

1 32 2
(cos )( sin )z
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Hj j
E c c Bx A Ay
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(VI)

Apply above boundary condition in VI

1 32
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


(cos )(cos y)z

n
H c Bx

b




n=0,1,2,3…



TE wave

E 0y  At x=a y  0 to b

(iv)Right conducting wall

2 2
( sin )(cos y)z

y

Hj j n
E cB Bx
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(VII)

Apply above boundary condition in VII
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m=0,1,2,3…



TE wave
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

For different values of integer m and n there are different field configurations and these field
configurations are called as modes(               modes).
m represents field variation along X-direction, n represents field variation along Y-direction
For m=0,n=0; all the components are equal to zeros. i.e mode does not exist. 
For m=0, n=1;                                                      For m=1, n=0; 

Least possible mode in                 waves are    

mnTE

00TE

, , 0y x zE H H , , 0x y zE H H 

mnTE 10, 01TE TE



Cutoff frequency
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Cutoff frequency
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Characteristics of TE, TM waves

If the medium between two conducting plates is freespace

( )c cf f  If

Is purely real and there is no wave propagation

( )c cf f  If

Is purely imaginary and there is wave propagation
To get wave propagation in the waveguide operating frequency f must be greater than
cutoff frequency and we can say  waveguide acting as High Pass Filter 

2 2( ) ( )
2

c

c m n
f

a b
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Cutoff frequency

Cutoff frequency is defined as the frequency below which wave propagation ceases

Cutoff wave length

c

c

c

f
 

The mode which is having least cutoff frequency and highest cutoff wave length is called 
as dominant mode

10 2
cTE
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f
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Cutoff frequency

01 2
cTE

c
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b
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In           waves dominant mode is  

In             waves dominant mode is     

mnTE

mnTM
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11TM

is dominant mode for the entire rectangular waveguide10TE
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1. A rectangular waveguide has a=4cm, b=3cm as its sectional dimensions.
Conclude all the modes which will propagate at 500MHz.

10 2
cTE

c
f

a


103 10

2 4

x

x
 =3.75GHz

To get wave propagation in the waveguide operating frequency f must be greater than
cutoff frequency 

cf f

No mode is possible



2. A Rectangular wave guide is filled by dielectric material of εr=9 and has dimensions of 
7*3.5cm, it operates in the dominant TE mode. Determine cutoff frequency,  phase velocity 
in guide at 2GHz.

Given  a=7cm, b=3.5cm, f=2GHz
Dominant mode TE10

2 21
( ) ( )

2
c

m n
f

a b
  10

10

0 0

1 3 10

2 2 2 7 9TEc

r r

c x
f

a a x x   
   =0.71GHz

2

2
(1 )c

c
v

f

f





83.73 10 /x m s



3. A standard air-filled waveguide with dimensions a=8.636cm, b=4.318cm is fed by a 
4GHz carrier from a coaxial cable. Justify whether a TE10 mode will be propagated. 
If so, calculate the phase velocity and group velocity

10

103 10

2 2 8.636
cTE

c x
f

a x
  =1.73GHz

f=4GHz

cf f

SoTE10 mode is possible

2

2
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c
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

83.38 10 /x m s

2

2
(1 )c

g

f
v c

f
  82.84 10 /x m s



4. An air field rectangular wave guide has dimensions of a = 6 cm, b=4cm.The signal frequency is 
3 GHz. Calculate Cut off frequency, Wave length, phase velocity for TE10, TE11 modes

10 2
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c
f

a


10
2cTE a 

2 2 2 2

11
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1 1
( ) ( ) ( ) ( )

2 2
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

103 10

2 6

x

x
 =2.5GHZ

=12cm

=4.5GHz

11cTEf f So TE11 mode is not possible

105.42 10x m/s



5.A 6GHz signal is to be propagated in the dominant mode in a RWG in its group velocity
Is to be 80% of c. What must be the width of WG. What impedance will it offer to this if
it is correctly matched.
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Quality factor(Q) is the measure of frequency selectivity of resonator or measure of loss in the
resonator

r

loss

w
Q

p


Where
r is resonant frequency

w is energy stored in the resonator

lossp is the power loss in the resonator

Energy density stored in the form of electric field 21

2
eW E

Energy density stored in the form of magnetic field 21

2
mW H

At resonance 
e mw w w 

Q factor of Rectangular cavity resonator (UNIT-IV)



Energy stored in the form of electric field 
21

2
ew E dv 
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0 0 0
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a b d

e yw E dxdydz   

Energy stored in the form of magnetic field 
21

2
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a b d

m x zw H dxdydz   

21
| J |

2
loss s sP RPower loss per unit area due to conducting wall

t sH J

21
| |

2
loss s tP R H

Q factor of Rectangular cavity resonator (UNIT-IV)
101( , , 0)y x zTE E H H 
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2
loss s tp R H ds Power loss due to conducting wall
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2

a b a b

s
loss x x

R
p H z dxdy H z d dxdy      

Power loss due to front and back conducting walls

Power loss due to left and right conducting walls
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2

b d b d

s
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R
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Power loss due to top and bottom conducting walls
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(1)

(2)

(3)

Q factor of Rectangular cavity resonator (UNIT-IV)



By adding equations (1), (2) and (3) total power loss in the resonator is obtained

Q factor of Rectangular cavity resonator (UNIT-IV)

0 a

b

d



Quality factor(Q) is the measure of frequency selectivity of resonator or measure of loss in the
resonator

Where
r is resonant frequency

w is energy stored in the resonator

lossp is the power loss in the resonator

Energy density stored in the form of electric field 21

2
eW E

Energy density stored in the form of magnetic field 21

2
mW H

At resonance e mw w w 

Q factor of cylindrical cavity resonator (UNIT-V)
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w
Q

p




Energy stored in the form of electric field 
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Energy stored in the form of magnetic field 
21

2
mw H dv 

2

2 2 2

0 0 0

(H H ) z
2

a d

m zw H d d d



 


      

21
| J |

2
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By adding equations (1), (2) total power loss in the resonator is obtained
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1.A rectangular cavity resonator has the following dimension: a=5cm, b=2cm and 
d=15cm. Calculate (i) the resonant frequency of the dominant mode TE101 for an air 
filled cavity (ii) dielectric filled cavity of εr=4.
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2.Calculate the resonant frequency of a circular resonator of following dimensions. 
Diameter=12.5cm and length=5cm for TM012 mode. 
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1.An air filled circular waveguide has a radius of 2cm and is to carry energy at a 
frequency of 8GHz. Find all the TE and TM modes for which energy transmission is 
possible. 
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2.A circular wave guide has a cut off frequency of 9GHz in dominant mode. Find 
the inside diameter of the guide if it is i) air-filled. ii) Filled with dielectric with  
εr=4.
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3.An air filled circular waveguide is to be operated at a frequency of 6GHz and is to 
have dimensions such that fc=0.8f for TE11 mode. Determine the diameter of the 
waveguide and guide wavelength. 
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4.Prove that area of circular waveguide is 2.2 times of area of rectangular waveguide for dominant
mode propagation 
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